Chapitre 3 Parcours 1

Comment résoudre une équation du second degré?

Exemple : Résoudre l'équation $2x^2 + 7x - 4 = 0$.

On repère les coefficients du trinôme pour calculer le discriminant :

$$a = 2$$
; $b = 7$; $c = -4$.

On applique la formule : $\Delta = b^2 - 4ac = 7^2 - 4 \times 2 \times (-4) = 81$.

Si $\Delta > 0$, l'équation a deux solutions données par :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$. par : $x_0 = \frac{-b}{2a}$.

Si $\Delta = 0$, l'équation a une solution donnée

par :
$$x_0 = \frac{-b}{2a}$$
.

Si $\Delta < 0$, l'équation n'a pas de solution.

Ici Δ > 0 : l'équation a deux solutions : $x_1 = \frac{-7 + \sqrt{81}}{2 \times 2} = \frac{1}{2}$ et $x_1 = \frac{-7 - \sqrt{81}}{2 \times 2} = -4$.

a) Pour chacune des équations ci-dessous, indiquer les coefficients a, b et c, puis calculer le discriminant correspondant.

$$x^2 + 6x + 3 = 0$$

$$3x^2 + 2x + 5 = 0$$

$$3x^2 + 2x + 5 = 0 x^2 - 16x + 64 = 0$$

- b) Sans les calculer, déterminer le nombre de solutions pour chacune des équations précédentes.
- a) Relier chaque équation à son discriminant :

$$x^{2} - 0.4x + 0.04 = 0$$
 | $4x^{2} - 23x + 15 = 0$ | $-x^{2} + 6x - 5 = 0$ | $5x^{2} - 8x + 6$

b) Simplifier les solutions et indiquer à quelle équation elles correspondent :

$$x_1 = \frac{23 - \sqrt{\dots}}{2 \times 4} = \dots$$
 $x_0 = -\frac{\dots}{2 \times \dots} = \dots$ $x_1 = \frac{\dots - \sqrt{16}}{2 \times \dots} = \dots$

Nom:	Classe :

3	Résoudre chacune des équations ci-dessous, sans calculer le discriminant :

a)
$$(5x+6)(x-7)=0$$
 b) $3x^2-75=0$ **c)** $4x-16x^2=0$

b)
$$3x^2 - 75 = 0$$

c)
$$4x - 16x^2 = 0$$

4		
4	a)	Résoudre dans \mathbb{R} l'équation $-2x^2 + 32 = 0$ sans calculer le discriminant.

b)) Vérifier votre réponse en calculant le discriminant.

Résoudre dans ${\mathbb R}$ chacune des équations données, par la méthode de votre choix :

$$2x^{2} - 18x = 0$$

$$-x^{2} + 5x + 6 = 0$$

$$4x^{2} + 8 + 10x = 0$$

$$-3x^{2} + 8x - 4 = 0$$

6 La trajectoire d'une balle est modélisée par la fonction $f(t) = -0.4t^2 + 1.6t + 1.3$ où t est le temps en secondes à partir du lancer de la balle et f(t) est l'altitude de la balle par rapport au sol en mètres.

Déterminer à quel(s) instant(s) la balle atteint une altitude de 2,5 m par rapport au sol.

Chapitre 3 Parcours 2

Comment factoriser une fonction polynôme du second degré en diversifiant les stratégies ?

Exemple : Factoriser la fonction définie sur \mathbb{R} par $f(x) = 2x^2 + 6x - 8$.

Méthode 1:

• On repère une racine évidente :

$$2 \times 1^2 + 6 \times 1 - 8 = 0$$

1 est une racine évidente

• On peut alors factoriser par (x-1):

$$f(x) = (x - 1)(2x + 8)$$

Méthode 2:

• On détermine les racines de f en calculant le discriminant.

$$\Delta = 6^2 - 4 \times 2 \times (-8) = 100$$

$$x_1 = \frac{-6 + \sqrt{100}}{2 \times 2} = 1$$

ou
$$x_2 = \frac{-6 - \sqrt{100}}{2 \times 2} = -4$$

On obtient la factorisation suivante :

$$f(x) = 2(x - 1)(x + 4)$$

- a) Vérifier que -2 est une racine évidente du polynôme défini sur $\mathbb R$ par : $f(x) = 3x^2 - 9x - 30$.
- **b)** Compléter les égalités suivantes, afin de déterminer une forme factorisée de f:

$$f(x) = 3x^2 - 9x - 30$$

$$f(x) = (x+2)(\dots x - \dots)$$

$$f(x) = \cdots (x+2)(x-\cdots)$$

Compléter les égalités suivantes pour obtenir une factorisation de chacune des fonctions données :

a)
$$f(x) = 5x^2 + 14x$$

$$f(x) = x(\dots x + \dots \dots)$$

b)
$$g(x) = x^2 + 4x + 4$$

b)
$$g(x) = x^2 + 4x + 4$$

 $g(x) = x^2 + 2 \times ... \times ... + ...^2$
 $g(x) = (x + \cdots ...)^2$
c) $h(x) = 3x^2 - 5x + 2$
 $h(1) = 3 \times 1^2 - 5 \times 1 + 2$
 $h(1) = \cdots$
 $h(x) = \cdots (x - \cdots)(x - \cdots)$

$$g(x) = (x + \cdots \dots)^2$$

c)
$$h(x) = 3x^2 - 5x + 2$$

$$h(1) = 3 \times 1^2 - 5 \times 1 + 2$$

$$h(1) = \cdots$$

$$h(x) = \cdots (x - \cdots)(x - \cdots)$$

Classe	:
Classe	-

- 3
- a) Vérifier que 3 est une racine évidente de la fonction définie sur $\mathbb R$ par :

$$f(x) = 2x^2 + 2x - 24.$$

.....

b) En déduire une forme factorisée de $f(x) = 2x^2 + 2x - 24$.

-
- a) Déterminer les racines de la fonction définie sur \mathbb{R} par $g(x) = -5x^2 + 5x + 60$.
- **b)** En déduire une forme factorisée de la fonction g(x).

a) Parmi les fonctions proposées, déterminer celle qui ne peut pas être factorisée. $f_1(x) = x^2 - 64$ $f_2(x) = x^2 - 0.8x + 0.16$ $f_3(x) = 2x^2 + 7x + 7$ $f_4(x) = -x^2 + 6x + 7$

b) Par la méthode de son choix, factoriser les 3 fonctions factorisables de la question a).

Factoriser, par la méthode de son choix, chacune des expressions suivantes :

 $f(x) = 6x^2 + 12x + 6$

$$g(x) = -3x^2 + 14x + 5$$

 $h(x) = 3x^2 - 48$

Chapitre 3 Parcours 3

Comment résoudre une inéquation du second degré ?

Exemple : Résoudre dans \mathbb{R} l'inéquation $2x^2 + 4x - 6 > 0$.

- On détermine les racines du trinôme : $\Delta = 4^2 4 \times 2 \times (-6) = 64$ On en déduit : $x_1 = \frac{-4 - \sqrt{64}}{2 \times 2} = -3$ et $x_2 = \frac{-4 + \sqrt{64}}{2 \times 2} = 1$
- On dresse le tableau de signes :

x	$-\infty$		-3		1		+∞
signe		+	0	_	0	+	

- On cherche dans le tableau de signes le signe correspondant à > 0, c'est-àdire +, et on en déduit l'ensemble des solutions : $S =]-\infty; -3[\cup]1; +\infty[$
- On veut résoudre dans \mathbb{R} l'inéquation : $3x^2 + 21x + 30 \le 0$.
- a) Calculer le discriminant Δ et en déduire les racines du trinôme.

 $a = \dots, b = \dots, c = \dots$; on en déduit que $\Delta = b^2 - 4ac = \dots$

Les racines du trinôme sont : $x_1 = \frac{\dots - \sqrt{\dots}}{2 \times \dots} = \dots$ ou $x_2 = \frac{\dots + \sqrt{\dots}}{2 \times \dots} = \dots$

b) Compléter le tableau de signes du trinôme :

х	-∞			+∞
Signe		0	 0	

c) En déduire l'ensemble des solutions de l'inéquation.

a) Parmi les tableaux de signes suivants, indiquer quel est celui qui correspond à l'expression 3(x-2)(x-6):

х	-∞	-2	- 6	+∞
	+	0	- 0	+

x	-∞		2		6	+∞
		+	0	_	0	+

х	-∞	2		6	+ ∞
	_	0	+	0	-

b) En déduire l'ensemble des solutions de l'inéquation $3(x-2)(x-6) \ge 0$.

Nom:	Classe :

3	_,	N Ditamainan la table au de ainman annua de di Namanaine 2, 2 t
	a	Déterminer le tableau de signes correspondant à l'expression $-2x^2 + x - 5$

x	$-\infty$ $+\infty$	х	-∞	+∞	х	$-\infty$			+∞
	_		+			_	- 0	_	

b) En déduire l'ensemble des solutions de l'inéquation $-2x^2 + x - 5 > 0$.

- **a)** Factoriser l'expression $-5x^2 + 16x$.
- $-5x^2 + 16x = \dots$

b) Dresser le tableau de signes de $-5x^2 + 16x$ et en déduire l'ensemble des solutions de $-5x^2 + 16x \ge 0$.

- Parmi les inéquations données, déterminer :
- a) L'inéquation qui n'admet aucune solution.
- b) L'inéquation qui admet pour solution un intervalle.
- c) L'inéquation qui admet pour solution une réunion d'intervalles.
- d) L'inéquation qui admet pour solution un singleton.

$$-2x^{2} + 5x - 3 \ge 0 \qquad 3x^{2} - 30x + 75 > 0 \qquad x^{2} + 4x + 4 \le 0 \qquad 5x^{2} - 6x + 7 < 0$$

Résoudre dans R chacune des inéquations ci-dessous :

a)
$$22x - 4x^2 \le 0$$
 b) $2x^2 + 10x - 0$

b)
$$2x^2 + 10x - 28 < 0$$
 c) $-7x^2 + 4x - 3 \ge 0$